Chapter 10

Trigonometry

  • The word "trigonometry" is derived from the words "tri" (meaning three), "gon" (meaning sides) and "metry" (meaning measure).Thus trigonometry deals with the measurement of sides and angles of a triangle.
    "trigonometry" ဟူသောစကားသည်၊ "tri"သုံး၊ "gon"အနားများ၊ "metry"အတိုင်းအတာ ဟူသောစကားလုံးများမှဆင်းသက်လာသည်။ထို့ကြောင့် "trigonometry" ဟူသောစကားရပ်သည်တြိဂံတစ်ခု၏ထောင့်များနှင့်အနားများ၏အတိုင်းအတာများနှင့်ဆက်စပ်နေသည်။
  • "trigonometry" ပညာရပ်ကိုနက္ခတ္တဗေဒ၊မြေပြင်ကွင်းဆင်းတိုင်းတာခြင်း၊ပထဝီဝင်၊ရူပဗေဒ၊ရေကြောင်းလေကြောင်းမောင်းနှင်သွားလာမှုစသည်တို့တွင် ကျယ်ပြန့်စွာအသုံးပြုကြသည်။
  • ကျောင်းသား/သူများသည် "trigonometry" ကိုလေ့လာရန်သဏ္ဌာန်တူတြိဂံများဆိုင်ရာသီအိုရမ်များကိုသိကျွမ်းပြီးဖြစ်နေရမည်။သို့မှသာ "Trigonometric ratios" တြီဂိုအချိုးများကိုလွယ်ကူစွာသဘောပေါက်နိုင်မည်ဖြစ်သည်။"Grade 10" အဆင့်တွင်တြီဂိိနိုမေတြီဘာသာရပ်အားစတင်လေ့လာရာတွင် "acute angle" ထောင့်ကျဉ်း(ထောင့်ချွန်း)များမှစတင်၍လေ့လာကြမည်။
  • စင်စစ် "Trigonometry" သည်တြိဂံ၏ထောင့်အရွယ်အစားအားလုံးနှင့်သက်ဆိုင်သည်။ကန့်သတ်ထားရန်မလိုပေ။ပိုမိုအဆင့်မြင့်သောသင်္ချာဘာသာရပ်များ (Pure or Applied Mathematics) တို့တွင်တြီဂိုနိုမေတြီအသိပညာသည်အဖိုးထိုက်လှပေသည်။
10.1 Angles
In Trigonometry, an angle is determined by rotating a ray about its endpoint from an initial position to terminal position.
Trigonometryတွင်မျဉ်းတန်းတစ်ခု၏အစွန်းမှတ်အားမူလအမှတ်$O$ကိုဗဟိုပြု၍မူလတည်နေရာမှအဆုံးတည်နေရာသို့လှည့်ခြင်းဖြင့်ထောင့်တစ်ခုဖြစ်ပေါ်လာသည်။

Consider a line $O P$ which is free to rotate in the $XY$-plane. $O$ is taken to be the original about which a line $OP$ rotates. When the line $OP$ is rotated, it is possible to vary the size of the angle $\theta$ between $OP$ and $OX$. Angles measured from the $X$-axis (ie.,$OX$) in an anticlockwise direction are positive angles. Angles measured from the $X$-axis in a clockwise direction are negative angles.
$O P$ သည်ပြင်ညီ $XY$ ပေါ်တွင်မူလမှတ် $O$ ကိုဗဟိုပြု၍လွတ်လပ်စွာလှည့်နိုင်သောမျဉ်းဖြောင့်တစ်ကြောင်းဖြစ်ပါစေ။$O P$ ကိုလှည့်ခြင်းဖြင့် $O P$ နှင့် $O X$ တို့ကြားရှိထောင့် $\theta$ ၏အရွယ်အစားကိုပြောင်းလဲပေးနိုင်သည်။ $O P$ ကို $X$-axis မှ anticlockwise direction (နာရီလက်တံဆန့်ကျင်ဘက်အတိုင်း) တိုင်းတာရရှိသောထောင့်များသည်အပေါင်းထောင့်များဖြစ်ကြသည်။ $O P$ ကို $X$-axis မှ clockwise direction (နာရီလက်တံအတိုင်း) တိုင်းတာရရှိသောထောင့်များသည်အနုတ်ထောင့်များဖြစ်ကြသည်။


The angle $\alpha$($\angle P_{1}OX$) is positive while angle $\beta$($\angle P_{2}OX$) is negative.
ထောင့် $\alpha$ သည် anticlockwise direction ဖြစ်သဖြင့် $\alpha$ ၏တန်ဖိုးသည် အပေါင်းဖြစ်သည်။ထောင့် $\beta$ သည် anticlockwise direction ဖြစ်သဖြင့် $\beta$ ၏တန်ဖိုးသည် အနုတ်ဖြစ်သည်။
One complete revolution of the line $OP$ from $OX$ makes an angle of $360^{\circ}$.
$OP$ ကို $OX$ မှတစ်ပါတ်အပြည့်လှည့်၍ရသောထောင့်သည် $360^{\circ}$ ဖြစ်သည်။
"Grade 10" "Trigonometry" သင်ခန်းစာတွင်အပေါင်းထောင့်များကိုသာလေ့လာကြမည်။($0^{\circ}$<$\theta$< $90^{\circ}$)


10.2 The Relation between Degree and Radian Measure
Two kinds of units commonly used for measuring angles are radian measure and degree measure.
ထောင့်များ၏ပမာဏ(အရွယ်အစား)ကိုတိုင်းတာရာတွင်အများအားဖြင့်အသုံးပြုသော unit နှစ်မျိုးရှိသည်။ degree နှင့် radian တို့ဖြစ်သည်။
Radian တိုင်းတာမှုကိုအဆင့်မြင့်သင်္ချာနှင့်သိပ္ပံနယ်ပယ်များစွာတွင်သီးသန့်နီးပါးအသုံးပြုထားသည်။
ပထမဉီးစွာ radian ဟူသောအယူအဆနှင့်၊ radian နှင့် degree တို့အကြားဆက်သွယ်မှုကိုလေ့လာကြမည်။


အဝန်းပိုင်း $A B$ ၏အလျားနှင့်အချင်းဝက်အလျားတူညီနေလျှင်အဝန်းပိုင်း $A B$ ၏ဗဟို၌ခံဆောင်ထားသောထောင့် $\angle A O B $ = $1$ radian ရှိသည်ဟုသတ်မှတ်သည်။
Since the circumference of a circle is $2\pi$r, it substend a central angle of $2\pi$ radians. There are $2\pi$ radians in a complete rotation of $360^{\circ}$.
$\begin{aligned} 2\pi \text{ radians }&= 360^{\circ},\\ \text{ where } \pi& = \dfrac{22}{7} = 3.1416--- \end{aligned}$
$\begin{aligned} 1 \text { radian } &=\dfrac{180}{\pi} \text { degrees }\\ &\approx 57^{\circ} 19^{\prime} \end{aligned}$
$\begin{aligned} 1^{\circ}& =\dfrac{\pi}{180} \text { radians }\\ &\approx 0.01764 \text { radians } \end{aligned}$

Note: Usually when the units of an angle are not specified, it is understood that the angle is expressed in radians.
ထောင့်တစ်ခု၏ယူနစ်ကိုတိတိကျကျဖော်ပြထားခြင်းမရှိလျှင်ယင်းထောင့်ကို radian ဖြင့်ဖော်ပြထားသည်ဟုနားလည်ရမည်။


10.3 Arc Length and Area of a sector of a Circle


Let the arc $M N$ substends an angle of magnitude $\theta$ radians at the centre of a circle of radius $r$.
The length $s$ of arc $M N$ is proportional to the angle $\theta$,we have
$\begin{aligned} &\dfrac{\text { length of arc } M N}{\text { length of the circumference }}\\ &=\dfrac{\text { angle substended by arc } M N}{\text { angle substended by circumference }}\\ &\text{ i.e.}, \dfrac{s}{2 \pi r}=\dfrac{\theta}{2 \pi}\\ &\text{ (or) } \theta \text { (in radians) }=\dfrac{s}{r} \end{aligned}$

The area of the sector $M O N$ (the shaded region) is also proportional to the angle $\theta$,we have
$\begin{aligned} \dfrac{\text { area of sector MON }}{\text { area of circle }}&=\dfrac{\theta}{2 \pi}\\ \dfrac{A}{\pi r^{2}}&=\dfrac{\theta}{2 \pi}\\ A&=\dfrac{1}{2} r^{2} \theta \end{aligned}$
where $\theta$ is given in radian measures.
10.4 Six Trigonometric Ratios
တြီဂိုအချိုးများကောက်ရန်
ထောင့်ကျဉ်းတစ်ခု $P A Q $ ကိုစဉ်းစားကြမည်။ ထောင့်လက်တံ $ A P $ ပေါ်တွင်အမှတ် $B$ ကိုယူသည်။ $ B $ မှ $A Q $ ပေါ်သို့ထောင့်မတ်မျဉ်း $ B C $ ကိုဆွဲရာထောင့်မှန်တြိဂံ $A C B $ ဖြစ်ပေါ်လာသည်။
ထောင့်မှန်တြိဂံ $A C B $တွင် $\angle C = 90^{\circ}$ဖြစ်လျှင်
ထောင့်မှန်ခံအနား (Hypotenuse)=$ A B $ = $c$
ထောင့် $ A $ ၏မျက်နှာချင်းဆိုင်အနား (Opposite side of $\angle A$)=$ B C $= $ a $
ထောင့် $ A $ ၏နီးစပ်အနား (Adjacent side of $\angle A$)=$ A C $ = $ b $
ထောင့် $ B $ ၏မျက်နှာချင်းဆိုင်အနား (Opposite side of $\angle B$)=$ A C $= $ b $
ထောင့် $ B $ ၏နီးစပ်အနား (Adjacent side of $\angle B$)=$ B C $= $ a $


$\begin{aligned} \sin A &= \dfrac{\text{ opposite side of } \angle A}{\text{ hypotenuse }}= \dfrac{ B C }{ A B }\\ \cos A &= \dfrac{\text{ adjacent side of } \angle A}{\text{ hypotenuse }}= \dfrac{ A C }{ A B }\\ \tan A &= \dfrac{\text{ opposite side of } \angle A}{\text{ adjacent side of } \angle A}= \dfrac{ B C }{ A C }\\ \cot A &= \dfrac{\text{ adjacent side of } \angle A}{\text{ opposite side of } \angle A}= \dfrac{ A C }{ B C }\\ \sec A &= \dfrac{\text{ hypotenuse }}{\text{ adjacent side of } \angle A}= \dfrac{ A B }{ A C }\\ \csc A &= \dfrac{\text{ hypotenuse }}{\text{ opposite side of } \angle A}= \dfrac{ A B }{ B C }\\ \end{aligned}$

အလားတူစွာထောင့်ကျဉ်း $\angle B$ မှလည်းတြီဂိုအချိုးများကောက်ယူနိုင်သည်။
$\begin{aligned} \sin B &= \dfrac{\text{ opposite side of } \angle B}{\text{ hypotenuse }}= \dfrac{ A C }{ A B }\\ \cos B &= \dfrac{\text{ adjacent side of } \angle B}{\text{ hypotenuse }}= \dfrac{ B C }{ A B }\\ \tan B &= \dfrac{\text{ opposite side of } \angle B}{\text{ adjacent side of } \angle A}= \dfrac{ A C }{ B C }\\ \cot B &= \dfrac{\text{ adjacent side of } \angle B}{\text{ opposite side of } \angle A}= \dfrac{ B C }{ A C }\\ \sec B &= \dfrac{\text{ hypotenuse }}{\text{ adjacent side of } \angle B}= \dfrac{ A B }{ B C }\\ \csc B &= \dfrac{\text{ hypotenuse }}{\text{ opposite side of } \angle B}= \dfrac{ A B }{ A C }\\ \end{aligned}$

ထောင့်များ၏အတိုင်းအတာများသည် degree များဖြစ်သဖြင့် $\angle A = \alpha$ ဟူသည်မှာ $\angle A $၏အတိုင်းအတာမှာ $\alpha$ degree ရှိသည်ဟုဆိုလိုခြင်းဖြစ်သည်။ ထို့ကြောင့်$\angle A = \alpha$ဖြစ်လျှင် the sine of angle $A$ = $\sin A$ =$\sin \alpha$ ဟုရေးနိုင်သည်။
The six trigonometric ratios do not depend on the size of the triangle.
တြီဂိုအချိုး (၆)ခုသည်တြိဂံ၏အရွယ်အစားပေါ် ၌မှီခိုမှုမရှိပေ။

10.5 Relations between the Trigonometric Ratios
တြီဂိုအချိုးနှစ်ခုကြားရှိဆက်စပ်မှုကိုအခြေခံတြီဂိုအချိုး(၆)ခုကိုအသုံးပြု၍အောက်ပါအတိုင်းတွက်ထုတ်နိုင်သည်။


Let $\triangle A B C $ be a right triangle with $\angle C = 90^{\circ}$,
(i) $\sin A=\dfrac{a}{c}$ and $\csc A=\dfrac{c}{a}$
$\sin A \times \csc A=\dfrac{a}{c} \times \dfrac{c}{a}=1$
$\therefore \sin A=\dfrac{1}{\csc A}$ and $\csc A=\dfrac{1}{\sin A}$
Thus $\sin A$ and $\csc A$ are receprocials.
(ii) $\cos A=\dfrac{b}{c}$ and $\sec A=\dfrac{c}{b}$
$\cos A \times \sec A=\dfrac{b}{c} \times \dfrac{c}{b}=1$
$\therefore \cos A=\dfrac{1}{\sec A}$ and $\sec A=\dfrac{1}{\cos A}$
Thus $\cos A$ and $\sec A$ are receprocials.
(iii) $\tan A=\dfrac{a}{b}$ and $\cot A=\dfrac{b}{a}$
$\tan A \times \cot A=\dfrac{a}{b} \times \dfrac{b}{a}=1$
$\therefore \tan A=\dfrac{1}{\cot A}$ and $\cot A=\dfrac{1}{\tan A}$
Thus $\tan A$ and $\cot A$ are receprocials.
(iv) $\tan A=\dfrac{a}{b}=\dfrac{\dfrac{a}{c}}{\dfrac{b}{c}}=\dfrac{\sin A}{\cos A}$
$\therefore \tan A=\dfrac{\sin A}{\cos A} $
$\cot A=\dfrac{b}{a}=\dfrac{\dfrac{b}{c}}{\dfrac{a}{c}}=\dfrac{\cos A}{\sin A}$
$\therefore \cot A=\dfrac{\cos A}{\sin A}$
$\begin{aligned} \text{ (v) }\sin ^{2} A+\cos ^{2} A&=\left(\dfrac{a}{c}\right)^{2}+\left(\dfrac{b}{c}\right)^{2}\\ &=\dfrac{a^{2}}{c^{2}}+\dfrac{b^{2}}{c^{2}}\\ &=\dfrac{a^{2}+b^{2}}{c^{2}}\\ &=\dfrac{c^{2}}{c^{2}}\\ &=1\\ \therefore\sin ^{2} A+\cos ^{2} A &=1\\ \end{aligned}$

$\begin{aligned} \text{ (vi) } \sin ^{2} A+\cos ^{2} A&=1\\ \dfrac{\sin ^{2} A}{\sin ^{2} A}+\dfrac{\cos ^{2} A}{\sin ^{2} A}&=\dfrac{1}{\sin ^{2} A} \\ \therefore 1+\cot ^{2} A&=\csc ^{2} A\\ \end{aligned}$

$\begin{aligned} \text{ (vii) } \sin ^{2} A+\cos ^{2} A&=1\\ \dfrac{\sin ^{2} A}{\cos ^{2} A}+\dfrac{\cos ^{2} A}{\cos ^{2} A}&=\dfrac{1}{\cos ^{2} A}\\ \therefore \tan ^{2} A+1&=\sec ^{2} A\\ \end{aligned}$

$\begin{aligned} \text { (viii) Let } \angle A&=\alpha, \angle B=\beta \text { and } \angle C=\gamma=90^{\circ} \\ \alpha+\beta&=90^{\circ} \\ \beta&=90^{\circ}-\alpha \\ \sin \left(90^{\circ}-\alpha\right)&=\sin \beta=\dfrac{b}{c}=\cos \alpha \\ \cos \left(90^{\circ}-\alpha\right)&=\cos \beta=\dfrac{a}{c}=\sin \alpha \\ \tan \left(90^{\circ}-\alpha\right)&=\dfrac{\sin \left(90^{\circ}-\alpha\right)}{\cos \left(90^{\circ}-\alpha\right)}\\ &=\dfrac{\cos \alpha}{\sin \alpha}\\ &=\cot \alpha \\ \cot \left(90^{\circ}-\alpha\right)&= \dfrac{\cos \left(90^{\circ}-\alpha\right)}{\sin \left(90^{\circ}-\alpha\right)}\\ &=\dfrac{\sin \alpha}{\cos \alpha}\\ &=\tan \alpha \\ \sec \left(90^{\circ}-\alpha\right)&=\dfrac{1}{\cos \left(90^{\circ}-\alpha\right)}\\ &=\dfrac{1}{\sin \alpha}\\ &=\csc \alpha \\ \csc \left(90^{\circ}-\alpha\right)&=\dfrac{1}{\sin \left(90^{\circ}-\alpha\right)}\\ &=\dfrac{1}{\cos \alpha}\\ &=\sec \alpha \end{aligned}$

ဤတြီဂိုအချိုးဆက်သွယ်ချက်များကိုအသုံးပြု၍ သက်သေပြခြင်းများ၊ထပ်တူညီမျှခြင်းများကိုချိန်ကိုက်ခြင်းများကိုပြုလုပ်နိုင်သည်။

10.6 Value of the Trigonometric Ratios for Some Special Angles
'$45^{\circ}$-$45^{\circ}$ right triangle' နှင့် '$30^{\circ}$-$60^{\circ}$ right triangle အကြောင်းကို Chapter(8) 'Similarity' 'Special Right Triangle' သင်ခန်းစာတွင်လေ့လာခဲ့ကြသည်။ ယခုသင်ခန်းစာတွင်ထိုတြိဂံများ၏အထူးထောင့်များ $30^{\circ}$, $45^{\circ}$နှင့် $60^{\circ}$တို့၏တြီဂိုအချိုးများမှကိန်းဂဏန်းတန်ဖိုးများတွက်ထုတ်ရရှိကြောင်းလေ့လာကြမည်။

Trigonometric Ratios for an Angle of $45^{\circ}$
In a $45^{\circ}$-$45^{\circ}$ right triangle by considering one with the two equal sides of length '$a$' units each, the hypotenuse is '$\sqrt{2}a$'.
နှစ်နားညီထောင့်မှန်တြိဂံတစ်ခုတွင်ညီနေသောအနားနှစ်ဖက်၏အလျားကို'$a$'ယူနစ်ဟုယူဆပါကထောင့်မှန်ခံအနားအလျားသည်ပိုက်သာဂိုရသီအိုရမ်အရ'$\sqrt{2}a$'ဖြစ်သည်။


The six trigonometric ratios for an angle of $45^{\circ}$.
$\sin 45^{\circ}=\dfrac{a}{\sqrt{2} a}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}$
$\cos 45^{\circ}=\dfrac{a}{\sqrt{2} a}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}$
$\tan 45^{\circ}=\dfrac{a}{a}=1$
$\cot 45^{\circ}=\dfrac{1}{\tan 45^{\circ}}=\dfrac{1}{1}=1$
$\sec 45^{\circ}=\dfrac{1}{\cos 45^{\circ}}=\sqrt{2}$
$\csc 45^{\circ}=\dfrac{1}{\sin 45^{\circ}}=\sqrt{2}$

Trigonometric Ratios for an Angle of $30^{\circ}$ and $60^{\circ}$
In a $30^{\circ}$-$60^{\circ}$ right triangle with the shorter leg of '$a$'units in length, the hypotenuse is '$2a$' and the length of the other leg is '$\sqrt{3}a$'.
$30^{\circ}$-$60^{\circ}$ ထောင့်မှန်တြိဂံတစ်ခုတွင်ပို၍တိုသောထောင့်မှန်ဆောင်အနား၏အလျားကို'$a$'ယူနစ်၊ထောင့်မှန်ခံအနား၏အလျားအနားကို'$2a$'ယူနစ်ဟုယူဆပါကကျန်ထောင့်မှန်ဆောင်အနား၏အလျားသည်'$\sqrt{3}a$'ယူနစ်ဖြစ်သည်။


The six trigonometric ratios for an angle of $30^{\circ}$ and $60^{\circ}$ .
$\sin 30^{\circ}=\dfrac{a}{2 a}=\dfrac{1}{2}$
$\cos 30^{\circ}=\dfrac{\sqrt{3} a}{2 a}=\dfrac{\sqrt{3}}{2}$
$\tan 30^{\circ}=\dfrac{a}{\sqrt{3} a}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}$
$\cot 30^{\circ}=\dfrac{1}{\tan 30^{\circ}}=\sqrt{3}$
$\sec 30^{\circ}=\dfrac{1}{\cos 30^{\circ}}=\dfrac{2 \sqrt{3}}{3}$
$\csc 30^{\circ}=\dfrac{1}{\sin 30^{\circ}}=2$

$\sin 60^{\circ}=\dfrac{\sqrt{3} a}{2 a}=\dfrac{\sqrt{3}}{2}$
$\cos 60^{\circ}=\dfrac{a}{2 a}=\dfrac{1}{2}$
$\tan 60^{\circ}=\dfrac{\sqrt{3} a}{a}=\sqrt{3}$
$\cot 60^{\circ}=\dfrac{1}{\tan 60^{\circ}}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}$
$\sec 60^{\circ}=\dfrac{1}{\cos 60^{\circ}}=2$
$\csc 60^{\circ}=\dfrac{1}{\sin 60^{\circ}}=\dfrac{1}{\dfrac{\sqrt{3}}{2}}=\dfrac{2 \sqrt{3}}{3}$

Table summarizing the trigonometric ratios for special angles.

$\theta$ $\sin\theta$ $\cos\theta$ $\tan\theta$ $\cot\theta$ $\sec\theta$ $\csc\theta$
$30^{\circ}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{\sqrt{3}}{3}$ $\sqrt{3}$ $\dfrac{2\sqrt{3}}{3}$ $2$
$45^{\circ}$ $\dfrac{\sqrt{2}}{2}$ $\dfrac{\sqrt{2}}{2}$ $1$ $1$ $\sqrt{2}$ $\sqrt{2}$
$60^{\circ}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $\dfrac{\sqrt{3}}{3}$ $2$ $\dfrac{2\sqrt{3}}{3}$


10.7 Solution of Right Triangles
Every triangle has six parts, namely, three sides and three angles. In the solution of right triangles there are really only two cases to be considered.
တြိဂံတိုင်းတွင်အနားသုံးနားနှင့်ထောင့်သုံးထောင့်ဟူ၍အစိတ်အပိုင်းခြောက်ခုရှိ၏။ထောင့်မှန်တြိဂံများဖြေရှင်းရာတွင်စဉ်းစားရန်ဖြစ်ရပ်နှစ်ခုရှိ၏။
Case(1) To solve a right triangle when two sides are given.
အနားနှစ်ဖက်ပေးထားသောထောင့်မှန်တြိဂံတစ်ခုကိုဖြေရှင်းရန်။
(i)ထောင့်မှန်တြိဂံတစ်ခုတွင်ထောင့်တစ်ထောင့်သည်$90^{\circ}$ဖြစ်ပြီးအနားနှစ်ဖက်အလျားများပေးထားပါကပိုက်သာဂိုရသီအိုရမ်သုံး၍ကျန်အနားတစ်ဖက်ကိုရှာနိုင်သည်။
(ii)ထောင့်ကျဉ်းတစ်ခုမှမိမိနှစ်သက်ရာတြီဂိုအချိုးကောက်ယူခြင်းဖြင့်ယင်းထောင့်၏တန်ဖိုးကိုရှာနိုင်သည်။
(iii)$90^{\circ}$မှထိုထောင့်တန်ဖိုးအားနှုတ်ပါကကျန်သောထောင့်တန်ဖိုးကိုရရှိမည်ဖြစ်သည်။

Case(2) To solve a right triangle one side one acute angle are given.
အနားတစ်ဖက်နှင့်ထောင့်ကျဉ်းတစ်ခုပေးထားသောထောင့်မှန်တြိဂံတစ်ခုကိုဖြေရှင်းရန်။
(i)ထောင့်မှန်တြိဂံတစ်ခုတွင်ထောင့်တစ်ထောင့်သည်$90^{\circ}$ဖြစ်ပြီးထောင်းကျဉ်းတစ်ခုတန်ဖိုးပေးထားပါက$90^{\circ}$မှပေးထားသောထောင့်ကျဉ်းတန်ဖိုးကိုနှုတ်ခြင်းဖြင့်ကျန်သောထောင့်တန်ဖိုးကိုရရှိမည်ဖြစ်သည်။
(ii)ထောင့်ကျဉ်းတစ်ခုမှမိမိရှာလိုသောအနားနှင့်ပေးထားသောအနားတို့၏တြီဂိုအချိုးကောက်ယူခြင်းဖြင့်ရှာလိုသောအနားအလျားကိုရရှိမည်။
(iii)ထောင့်ကျဉ်းတစ်ခုမှကျန်သောအနားနှင့်အခြားအနားတို့၏တြီဂိုအချိုးကောက်ယူခြင်းဖြင့်ကျန်အနားကိုရရှိမည်ဖြစ်သည်။
လက်တွေ့တွက်ချက်မှုများကို Example 14, Example 15, Example 16, Example 17 တို့တွင်လေ့လာနိုင်ပါသည်။

10.8 Angle of Elevation and Angle of Depression
Let $O A$ be a horizontal line in the same vertical plane as an object $B$.Let $O$ and $B$ be joined.
$O A$ သည်ရေပြင်ညီမျဉ်းတစ်ခုဖြစ်ပြီး ဝတ္တု $B$ သည် $O A$ နှင့်ဒေါင်လိုက်ပြင်ညီတစ်ခုတည်းတွင်ရှိပါစေ။$O$ နှင့် $B$ ကိုဆက်သည်။



In the first figure, where the object $B$ is above the horizontal line $O A$, $\theta$ is called the angle of elevation of the object $B$ as seen from the point $O$.
ပထမပုံတွင် $O A$ သည် horizontal line တစ်ခုဖြစ်ပြီး $O A$ ၏အထက်ဘက်ရှိအရာဝတ္တု $B$ ကို $O$ မှကြည့်လျှင် $\angle A O B =\theta $ ကို $ B $ ၏ angle of elevation (မြင့်ထောင့်)ဟုခေါ်သည်။

In the second figure, where the object $B$ is below the horizontal line $O A$, $\theta$ is called the angle of depression of the object $B$ as seen from the point $O$.
ဒုတိယပုံတွင် $O A$ သည် horizontal line တစ်ခုဖြစ်ပြီး $O A$ ၏အောက်ဘက်ရှိအရာဝတ္တု $B$ ကို $O$ မှကြည့်လျှင် $\angle A O B =\theta $ ကို $ B $ ၏ angle of depression (နိမ့်ထောင့်)ဟုခေါ်သည်။

Problems

Example 1

Express the following in radian measures.
  1. 60°
  2. 135°


  1. $60^{\circ}=60 \times \dfrac{\pi}{180}$ radians $=\dfrac{\pi}{3}$ radians

  2. $135^{\circ}=135 \times \dfrac{\pi}{180}$ radians $=\dfrac{3 \pi}{4}$ radians

Example 2

Express the following in degree measures.
  1. $\dfrac{\pi}{4}$radians

  2. $\dfrac{4\pi}{5}$radians


  1. $\dfrac{\pi}{4}$ radians $=\dfrac{\pi}{4} \times \dfrac{180}{\pi}$ degrees $=45^{\circ}$

  2. $\dfrac{4 \pi}{5}$ radians $=\dfrac{4 \pi}{5} \times \dfrac{180}{\pi}$ degrees $=144^{\circ}$

Example 3

An arc BC substends an angle of 144° at the centre O of a circle of radius 10 cm. Find the length of arc BC and the area of the sector BOC.



$\theta=144^{\circ}=144 \times \dfrac{\pi}{180}=\dfrac{4 \pi}{5}$ radians and $r=10 \mathrm{~cm}$.
$\begin{aligned} \text{ The length of arc } B C&=r \theta\\ &=10 \times \dfrac{4 \pi}{5}\\ &=8 \pi \mathrm{~cm}\\ \end{aligned}$
$\begin{aligned} \text{ The area of sector } B O C&=\dfrac{1}{2} r^{2} \theta\\ &=\dfrac{1}{2} \times 10^{2} \times \dfrac{4 \pi}{5}\\ &=40 \pi \mathrm{~cm}^{2} \end{aligned}$

Example 4

(a) Using the right triangle $A B C$, find $\sin A$, $\cos A$, $\tan A$.
(b) Using the right triangle $A B^{'} C^{'}$, find $\sin A$, $\cos A$, $\tan A$.


(a) From the right triangle $A B C$,
$\begin{aligned} \sin A&=\dfrac{\text { opposite side of } \angle A}{\text { hypotenuse }}=\dfrac{B C}{A B}=\frac{3}{5} \\ \cos A&=\dfrac{\text { adjacent side of } \angle A}{\text { hypotenuse }}=\dfrac{A C}{A B}=\frac{4}{5} \\ \tan A&=\dfrac{\text { opposite side of } \angle A}{\text { adjacent side of } \angle A}=\dfrac{B C}{A C}=\dfrac{3}{4} \end{aligned}$
(b) from the right triangle $A B^{\prime} C^{\prime}$,
$\begin{aligned} \sin A&=\dfrac{\text { opposite side of } \angle A}{\text { hypotenuse }}=\dfrac{B^{\prime} C^{\prime}}{A B^{\prime}}=\dfrac{6}{10}=\dfrac{3}{5}\\ \cos A&=\dfrac{\text { adjacent side of } \angle A}{\text { hypotenuse }}=\dfrac{A C^{\prime}}{A B^{\prime}}=\dfrac{8}{10}=\frac{4}{5}\\ \tan A&=\dfrac{\text { opposite side of } \angle A}{\text { adjacent side of } \angle A}=\dfrac{B^{\prime} C^{\prime}}{A C^{\prime}}=\dfrac{6}{8}=\dfrac{3}{4} \end{aligned}$

Example 5

$A B C $ is a right triangle in which $C$ is the right angle. If $a$ = $4$ and $b$ = $3$, find $c$, $\cos A$ and $\sec B$.


In right triangle $A C B $,
By Pythagoras theorem,
$\begin{aligned} c^{2} &=a^{2}+b^{2} \\ &=4^{2}+3^{2} \\ &=25 \\ c &=5 \\ \cos A &=\dfrac{b}{c}=\dfrac{3}{5} \\ \sec B &=\dfrac{c}{a}=\dfrac{5}{4} \end{aligned}$

Example 6

Given the right triangle $A B C$ with $\angle C$ = $90^{\circ}$ and $\tan A$ = $\dfrac{5}{12}$, find $\sin A$ and $\cos A$.


$\tan A=\dfrac{5}{12}=\dfrac{B C}{A C}$
Take $ B C $ = $5 k$, $A C$ = $12 k$ where k is constant .
In right triangle $A C B $,
By Pythagoras Theorem,
$\begin{aligned} A B^{2} &=B C^{2}+A C^{2} \\ &=(5 k)^{2}+(12 k)^{2} \\ &=25 k^{2}+144 k^{2} \\ &=169 k^{2} \\ A B &=13 k \\ \sin A &=\dfrac{B C}{A B}=\dfrac{5 k}{13 k}=\dfrac{5}{13} \\ \cos A &=\dfrac{A C}{A B}=\dfrac{12 k}{13 k}=\dfrac{12}{13} \end{aligned}$

Example 7

Given the right triangle $A B C$ in which $\angle B$ = $90^{\circ}$, is drawn perpendicular to $C A$ and meets $A B$ produced at $D$. If $B C$ =$6$, $A B$ = $8$, $A C$ = $10$, find $C D$ and $A D$.


In right triangle $A B C, \tan A=\dfrac{B C}{A B}$
In right triangle $A C D, \tan A=\dfrac{C D}{A C}$
$\begin{aligned} \therefore \dfrac{B C}{A B} &=\dfrac{C D}{A C} \\ C D &=\dfrac{B C}{A B} \times A C \\ &=\dfrac{6}{8} \times 10 \\ &=7.5 \end{aligned}$
In right triangle $A C D, \sec A=\dfrac{A D}{A C}$
In right triangle $A B C, \sec A=\dfrac{A C}{A B}$
$\begin{aligned} \dfrac{A D}{A C} &=\dfrac{A C}{A B} \\ A D &=\dfrac{A C^{2}}{A B} \\ &=\dfrac{10^{2}}{8}=\dfrac{100}{8}=12.5 \end{aligned}$

Example 8

Prove that $\dfrac{\sin\theta}{\sqrt{1-\sin^{2}\theta}}$ = $\tan\theta$.

$\begin{aligned} \dfrac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}} &=\dfrac{\sin \theta}{\sqrt{\cos ^{2} \theta}}\quad(\because \sin ^{2} \theta+\sin ^{2} \theta=1) \\ &=\dfrac{\sin \theta}{\cos \theta} \\ &=\tan \theta \end{aligned}$

Example 9

Verify the identity ($1-\sin\theta$)($1+\sin\theta)$ = $\dfrac{1}{1+\tan^{2}\theta}$.

$\begin{aligned} (1-\sin \theta)(1+\sin \theta) &=1-\sin ^{2} \theta \\ &=\cos ^{2} \theta\quad(\because \sin ^{2} \theta+\cos ^{2} \theta=1) \\ &=\dfrac{1}{\sec ^{2} \theta}\quad(\because \cos \theta=\dfrac{1}{\sec \theta}) \\ &=\dfrac{1}{1+\tan ^{2} \theta}\quad(\because 1+\tan ^{2} \theta=\sec ^{2} \theta) \end{aligned}$

Example 10

Find the value of acute angle $\alpha$ when $\cos3\alpha$ = $\sin2\alpha$.

$\begin{aligned} \cos 3 \alpha &=\sin 2\alpha \\ \sin \left(90^{\circ}-3 \alpha\right) &=\sin 2 \alpha \quad(\because \sin \left(90^{\circ}- \alpha\right)= \cos\alpha )\\ 90^{\circ}-3 \alpha &=2 \alpha \\ 5 \alpha &=90^{\circ} \\ \alpha &=18^{\circ} \end{aligned}$

Example 11

Find the values of $\csc^{3}60^{\circ}$ and $\sec 30^{\circ}$$\sin 60^{\circ}$$\cos 45^{\circ}$.

$\begin{aligned} \csc ^{3} 60^{\circ}&=\left(\csc 60^{\circ}\right)^{3}\\ &=\left(\dfrac{2 \sqrt{3}}{3}\right)^{3}\\ &=\dfrac{24 \sqrt{3}}{27}\\ &=\dfrac{8 \sqrt{3}}{9} \\ \sec 30^{\circ} \sin 60^{\circ} \cos 45^{\circ}&=\dfrac{2 \sqrt{3}}{3} \times \dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{2}}{2}\\ &=\dfrac{\sqrt{2}}{2} \end{aligned}$

Example 12

Find the values of $2\tan 45^{\circ}$ + $2\sin^{3} 30^{\circ}$ - $4\cos^{4} 30^{\circ}$ + $3\tan^{2} 30^{\circ}$.

$\begin{aligned} 2\tan 45^{\circ}+2 \sin ^{3} 30^{\circ}-4 \cos ^{4} 30^{\circ}+3 \tan ^{2} 30^{\circ} &=(2 \times 1)+2\left(\dfrac{1}{2}\right)^{3}-4\left(\dfrac{\sqrt{3}}{2}\right)^{4}+3\left(\dfrac{\sqrt{3}}{3}\right)^{2} \\ &=2+\dfrac{1}{4}-\dfrac{9}{4}+1 \\ &=1\\ \end{aligned}$

Example 13

Find the side marked $x$ from the given triangle.


$\begin{aligned} \csc B &=\dfrac{A B}{A C} \\ \cos 30^{\circ} &=\dfrac{x}{15} \\ x &=15 \cos 30^{\circ} \\ &=15 \times 2\\ &=30 \end{aligned}$

Example 14

Solve the triangle $A B C$ with $\angle B$ = $90^{\circ}$, $a$ = $10$, $b$ = $20$.


By Pythagoras Theorem,
$\begin{aligned} c^{2} &=b^{2}-a^{2} \\ &=400-100 \\ &=300 \\ c &=10 \sqrt{3} \\ \sin A &=\dfrac{a}{b}\\ &=\dfrac{10}{20}\\ &=\dfrac{1}{2}\\ &=\sin 30^{\circ} \\ \therefore \angle A &=30^{\circ} \\ \angle C &=90^{\circ}-\angle A\\ &=90^{\circ}-30^{\circ}\\ &=60^{\circ} \end{aligned}$
$\angle A =30^{\circ}$, $\angle C=60^{\circ}$, $c =10 \sqrt{3}$

Example 15

Solve the triangle $A B C$ with $\angle B$ = $90^{\circ}$, $\angle A$ = $30^{\circ}$, $c$ = $6$.


$\begin{aligned} \angle C &=90^{\circ}-\angle A\\ &=90^{\circ}-30^{\circ}\\ &=60^{\circ} \\ \dfrac{a}{c} &=\tan A \\ \dfrac{a}{6} &=\tan 30^{\circ} \\ a &=6 \tan 30^{\circ} \\ &=6 \times \dfrac{\sqrt{3}}{3}\\ &=2 \sqrt{3} \\ \dfrac{b}{c} &=\sec A \\ \dfrac{b}{6} &=\sec 30^{\circ} \\ b &=6 \sec 30^{\circ} \\ &=6 \times \dfrac{2\sqrt{3}}{3} \\ &=4 \sqrt{3} \end{aligned}$
$\angle C =60^{\circ}$, $a = 2 \sqrt{3}$, $b = 4 \sqrt{3}$

Example 16

In $ \triangle A B C $, the angles $A$ and $C$ are equal to $30^{\circ}$ and $120^{\circ}$ respectively; and the side $A C$ = $20$ ft, find the length of the perpendicular from $B$ upon $ A C $ produced.


Draw BD perpendicular to AC produced.
$\begin{aligned} \theta &=180^{\circ}-120^{\circ}=60^{\circ} \\ \beta&=180^{\circ}-\left(30^{\circ}+120^{\circ}\right)=30^{\circ} \\ \angle A&=\beta=30^{\circ} \\ \therefore A C&=B C=20 \end{aligned}$
In right $\triangle C D B$,
$\begin{aligned} \dfrac{B D}{B C} &=\sin \theta \\ \dfrac{B D}{20} &=\sin 60^{\circ} \\ B D &=20 \sin 60^{\circ} \\ &=20 \times \dfrac{\sqrt{3}}{2} \\ &=10 \sqrt{3} \mathrm{ft} \end{aligned}$

Example 17

Solve the triangle $ A B C $, $\angle C$ = $90^{\circ}$ and $\angle B$ = $25^{\circ}43^{'}$ and $c$ = $100$. Using as much of the information below as necessary.
[ $\cos 25^{\circ}43^{'}$ = $0.9010$, $\tan 25^{\circ}43^{'}$ = $0.4817$ ].


$\begin{aligned} \angle A &=90^{\circ}-\angle B\\ &=90^{\circ}-25^{\circ} 43^{\prime}\\ &=64^{\circ} 17^{\prime} \\ \dfrac{a}{c} &=\cos B \\ a &=c \cos B \\ &=100 \times \cos 25^{\circ} 43^{\prime} \\ &=100 \times 0.9010 \\ &=90.10 \\ \dfrac{b}{a} &=\tan B \\ b &=a \tan B \\ &=90.10 \times 0.4817 \\ &=43.40 \end{aligned}$
$\angle A=64^{\circ} 17^{\prime}$, $a=90.12$, $b=43.40$

Example 18

A kite is at the end of a $60$ ft string that is taut. It is $30$ ft above the ground. What is the angle of elevation of the kite?


$\begin{aligned} \sin A&=\dfrac{30}{60}\\ &=\dfrac{1}{2}\\ &=\sin 30^{\circ}\\ \therefore\angle A&=30^{\circ} \end{aligned}$
The angle of elevation of the kite is $30^{\circ}$.

Example 19

From the top of a house the angle of depression to a point on the ground is $30^{\circ}$. The point is $45$ ft from the base of the building. How high is the building?


$\cot 60^{\circ}=\dfrac{B C}{A B}$
$\begin{aligned} B C &=A B \cot 60^{\circ} \\ &=45\times \dfrac{\sqrt{3}}{3} \\ &=15 \sqrt{3} \mathrm{~ft} \end{aligned}$
The height of the building = $15 \sqrt{3} \mathrm{~ft}$

Exercise 10.1

  1. Convert each of the following to radians.
  2. (a) 120° (b) 90° (c) 72° (d) 225°
    (e) 150° (f) 108° (g) 160° (h) 390°


    (a) $120^{\circ}=120^{\circ} \times \dfrac{\pi}{180^{\circ}}=\dfrac{2 \pi}{3}$ radians

    (b) $90^{\circ}=90^{\circ} \times \dfrac{\pi}{180^{\circ}}=\dfrac{\pi}{2}$ radians

    (c) $72^{\circ}=72^{\circ} \times \dfrac{\pi}{180^{\circ}}=\dfrac{2 \pi}{5}$ radians

    (d) $225^{\circ}=225^{\circ} \times \dfrac{\pi}{180^{\circ}}=\dfrac{5 \pi}{4}$ radians

    (e) $150^{\circ}=150^{\circ} \times \dfrac{\mathbb{\pi}}{180^{\circ}}=\dfrac{5 \pi}{6}$ radians

    (f) $108^{\circ}=108^{\circ} \times \dfrac{\mathbb{\pi}}{180^{\circ}}=\dfrac{3 \pi}{5}$ radians

    (g) $160^{\circ}=160^{\circ} \times \dfrac{\pi}{180^{\circ}}=\dfrac{8 \pi}{9}$ radians

    (h) $390^{\circ}=390^{\circ} \times \dfrac{\pi}{180^{\circ}}=\dfrac{13 \pi}{6}$ radians

  3. Convert each of the following to degrees.
  4. (a) $\dfrac{\pi}{5}$ (b) $\dfrac{3\pi}{4}$ (c) $\dfrac{5\pi}{6}$ (d) $\pi$
    (e) $\dfrac{8\pi}{9}$ (f) $\dfrac{12\pi}{5}$ (g) $\dfrac{\pi}{3}$ (h) $\dfrac{7\pi}{3}$

    (a) $\dfrac{\pi}{5}=\dfrac{\pi}{5} \times \dfrac{180^{\circ}}{\pi}=36^{\circ}$

    (b) $\dfrac{3 \pi}{4}=\dfrac{3 \pi}{4} \times \dfrac{180^{\circ}}{\pi}=135^{\circ}$

    (c) $\dfrac{5 \pi}{6}=\dfrac{5 \pi}{6} \times \dfrac{180^{\circ}}{\pi}=150^{\circ}$

    (d) $\mathbb{\pi}=\mathbb{\pi} \times \dfrac{180^{\circ}}{\pi}=180^{\circ}$

    (e) $\dfrac{8 \pi}{9}=\dfrac{8 \pi}{9} \times \dfrac{180^{\circ}}{\pi}=160^{\circ}$

    (f) $\dfrac{12 \pi}{5}=\dfrac{12 \pi}{5} \times \dfrac{180^{\circ}}{\pi}=432^{\circ}$

    (g) $\dfrac{\pi}{3}=\dfrac{\pi}{3} \times \dfrac{180^{\circ}}{\pi}=60^{\circ}$

    (h) $\dfrac{7 \pi}{3}=\dfrac{7 \pi}{3} \times \dfrac{180^{\circ}}{\pi}=420^{\circ}$

  5. A central angle $\theta$ substends an arc of $\dfrac{11\pi}{2} \mathrm {~cm}$ on a circle of radius 6 cm. Find the measure of $\theta$ in radians and the area of a sector of a circle which has $\theta$ is its central angle.



  6. $\begin{aligned} s &=\dfrac{11 \pi}{2} \mathrm{~cm}, r=6 \mathrm{~cm} \\\\ \theta &=\dfrac{s}{r} \\\\ &=\dfrac{11 \pi}{2} \times \dfrac{1}{6}=\dfrac{11 \pi}{12} \text { radians } \\\\ A &=\dfrac{1}{2} r^{2} \theta \\\\ &=\dfrac{1}{2} \times 6 \times 6 \times \dfrac{11 \pi}{12} \\\\ &=16.5 \pi \mathrm{~cm}^{2} \end{aligned}$

  7. The area of a sector of a circle is $143$ $\mathrm{cm}^{2}$ and the length of the arc of a sector is $11 \mathrm {~cm}$. Find the radius of the circle.


  8. $\begin{aligned} A &=143 \mathrm{~cm}^{2}, s=11 \mathrm{~cm} \\\\ s &=r \theta \\\\ A &=\dfrac{1}{2} r^{2} \theta \\\\ &=\dfrac{1}{2} r(r \theta) \\\\ A &=\dfrac{1}{2} r s \\\\ 143 &=\dfrac{1}{2} r \times 11 \\\\ r &=\dfrac{286}{11} \\\\ r &=26 \mathrm{~cm} \end{aligned}$

  9. A sector cut from a circle of radius $3 \mathrm{~cm}$ has a perimeter of $16 \mathrm{~cm}$ . Find the area of this sector.


  10. $s=3 \mathrm{~cm}$
    $\begin{aligned} \text{ The perimeter of the sector } &=16 \mathrm{~cm}\\\\ r+r+s &=16 \\\\ 3+3+s &=16 \\\\ 6+s &=16 \\\\ s &=10 \mathrm{~cm} \end{aligned}$

    $\begin{aligned} \text { The area of the sector } &=\dfrac{1}{2} r^{2} \theta \\\\ &=\dfrac{1}{2} r(r \theta) \\\\ &=\dfrac{1}{2} r s \\\\ &=\dfrac{1}{2} \times 3 \times 10 \\\\ &=15 \mathrm{~cm}^{2} \end{aligned}$

  11. A piece of wire of fixed length $L \mathrm {~cm}$, is bent to form the boundary a sector of a circle. The circle has radius $r \mathrm {~cm}$ and the angle of the sector is $\theta=(\dfrac{32}{r}-2)$ radians. Find the wire of fixed length $L$ and show that the area of the sector, $ A \mathrm{~cm}^{2}$ is given by $A$ = $16r-r^{2}$.


  12. The length of a piece of wire $=L \mathrm{~cm}$
    The radius of the circle $=r \mathrm{~cm}$
    The length of $\operatorname{arc}=s \mathrm{~cm}$
    $\theta=\left(\dfrac{32}{r}-2\right)$ radians
    $\begin{aligned} \text{ The perimeter of the sector } &=r+r+s\\\\ &=\left(2 r+s\right) \mathrm{~cm} \\\\ s &=r \theta \\\\ &=r\left(\dfrac{32}r-2\right) \\\\ &=\left(32-2 r\right)\mathrm{~cm} \end{aligned}$

    $\begin{aligned} \text{ Since the length of a piece of wire } &=\text{ The perimeter of of the sector }\\\\ L &=2 r+s \\\\ L &=2 r+32-2 r \\\\ &=32 \mathrm{~cm} \end{aligned}$

    $\begin{aligned} \text{ The area of the sector } =A&=\dfrac{1}{2} r^{2} \theta \\\\ &=\dfrac{1}{2} r^{2}\left(\dfrac{32}{r}-2\right) \\\\ &=\left(16 r-r^{2}\right) \mathrm{cm}^{2} \end{aligned}$

  13. A race is run at uniform speed on a circular course. In each minute, a runner transverse an arc of a circle which subtends $2\dfrac{6}{7}$ radians at the centre of the course. If each lap is $792$ yards, how long does the runner take to run a mile?




  14. the central angle $=\theta=2 \dfrac{6}{7}=\dfrac{20}{7}$ radians
    $\begin{aligned} \text{ each lap } &=792 \text{ yards }\\\\ \text{ each lap } &= \text{ one complete circumference }\\\\ 792 &=2 \pi r \\\\ 792 &=2 \times \dfrac{22}{7} \times r \\\\ r &=126 \text { yards } \end{aligned}$
    In every minute, the runner transverses an arc of a circle.
    $\begin{aligned} \text{ The distance travelled by the runner } &= s\\\\ s &=r \theta \\\\ &=126 \times \dfrac{20}{7} \\\\ &=360 \text { yards } \end{aligned}$
    $1$ mile =$1760$ yards
    The runner takes $1$ minute in $360$ yards.
    $\begin{aligned} 360 \text{ yards } &=1 \text{ minute }\\\\ 1760 \text { yards } &=\dfrac{1760 \times 1}{360} \\\\ &=4.8889 \text { min } \end{aligned}$

  15. The large hand of a clock is $28$ inches long; how many inches does its extremity move in $20$ minutes?




  16. Let the length of the hand of a clock = $r$ = $28\mathrm{ ~in } $
    Let the angle taken by the hand in $20\mathrm{ minutes }$ = $\theta$
    $\begin{aligned} \dfrac{\theta}{360^{\circ}} &= \dfrac{20}{60}\\\\ \theta &= \dfrac{20}{60}\times 360\times\dfrac{\pi}{180}\\\\ &=\dfrac{2\pi}{3}\text{ radians } \end{aligned}$
    Let the arc length taken by the hand = $s$
    $\begin{aligned} s&=r\theta\\\\ &=28\times \dfrac{2\pi}{3}\\\\ &=28\times \dfrac{2}{3}\times \dfrac{22}{7}\\\\ &=58.67\mathrm{~in} \end{aligned}$

  17. The figure shows two sectors in which the arcs $ A B $ and $ C D $ are arcs of concentric circles, centre $ O $. If $\angle A O B =\dfrac{2}{3}$ radians, $ A C =3 \mathrm{~cm}$ and the area of sector $ A O B $ is $12 \mathrm{~cm}^{2}$, calculate the area and the perimeter of $ A B D C $.




  18. the central angle $=\angle A O B=\dfrac{2}{3}$ radians
    the radius of small sector $=O A=O B$
    the radias of large sector $=O C=O D$
    $A C=B D=3 \mathrm{~cm}$
    the area of sector $A O B=12 \mathrm{~cm}^{2}$
    $\begin{aligned} \text{ the area of sector } A O B&=\dfrac{1}{2} r^{2} \theta\\ 12&=\dfrac{1}{2} \times O A^{2} \times \angle A O B \\ 12&=\dfrac{1}{2} \times O A^{2} \times \dfrac{2}{3} \\ O A^{2}&=36 \\ O A&=6 \mathrm{~cm} \end{aligned}$
    $\begin{aligned} \text{ the length of arc } A B &=r \theta \\ &=O A \times \angle A O B \\ &=6 \times \dfrac{2}{3}\\ &=4 \mathrm{~cm} \\\\ O C &=O A+A C \\ &=6+3=9 \mathrm{~cm} \end{aligned}$
    $\begin{aligned} \text { the length of arc } C D=&r \theta \\ &= O C \times \angle A O B \\ =& 9 \times \dfrac{2}{3} \\ =& 6 \mathrm{~cm} \\ \text { The area of sector } C O D=& \dfrac{1}{2} r^{2} \theta \\ =& \dfrac{1}{2} \times O C^{2} \times \angle A O B \\ =& \dfrac{1}{2} \times 9 \times 9 \times \dfrac{2}{3} \\ =& 27 \mathrm{~cm}^{2} \end{aligned}$
    $\begin{aligned} \text{ the area of } A B D C&=\text { the area of sector } C O D-\text { the area of sector } A O B \\ &=27-12\\ &=15 \mathrm{~cm}^{2} \end{aligned}$
    $\begin{aligned} \text{ The perimeter of } A B C D&=A C+B D+\text{ the length of arc } A B+\text{ the length of arc } C D\\ &=3+3+4+6\\ &=16 \mathrm{~cm}\\ \end{aligned}$

Exercise 10.2

  1. Find the following trigonometric ratios for a right triangle with sides as indicated.
    $\sin A$, $\cos A$, $\tan A$, $\cot A$, $sec A$, $\csc A$
    $\sin B$, $\cos B$, $\tan B$, $\cot B$, $sec B$, $\csc B$


  2. $\sin A=\dfrac{B C}{A B}=\dfrac{3}{5}$
    $\cos A=\dfrac{A C}{A B}=\dfrac{4}{5}$
    $\tan A=\dfrac{B C}{A C}=\dfrac{3}{4}$
    $\cot A=\dfrac{A C}{B C}=\dfrac{4}{3}$
    $\sec A=\dfrac{A B}{A C}=\dfrac{5}{4}$
    $\csc A=\dfrac{A B}{B C}=\dfrac{5}{3}$

    $\sin B=\dfrac{A C}{A B}=\dfrac{4}{5}$
    $\cos B=\dfrac{B C}{A B}=\dfrac{3}{5}$
    $\tan B=\dfrac{A C}{B C}=\dfrac{4}{3}$
    $\cot B=\dfrac{B C}{A C}=\dfrac{3}{4}$
    $\sec B=\dfrac{A B}{B C}=\dfrac{5}{3}$
    $\csc B=\dfrac{A B}{A C}=\dfrac{5}{4}$

  3. Given a right $\triangle A B C$ with $\angle C = 90^{\circ}$ and $\cos A$=$\dfrac{5}{13}$ , determine the values of $\tan A$ and $\sin A$ .



  4. $\angle C=90^{\circ}, \cos A=\dfrac{5}{13}$
    Let $A C=5 k, A B=13 k$
    In right $\triangle A C B$,
    $\begin{aligned} B C^{2} &=A B^{2}-A C^{2} \\ &=(13 k)^{2}-(5 k)^{2} \\ &=169 k^{2}-25 k^{2} \\ &=144 k^{2} \\ B C &=12 k \\ \tan A &=\dfrac{B C}{A C} \\ &=\dfrac{12 k}{5 k}\\ &=\dfrac{12}{5} \\ \sin A &=\dfrac{B C}{A B} \\ &=\dfrac{12 k}{13 k}\\ &=\dfrac{12}{13} \end{aligned}$

  5. Given a right $\triangle P Q R$ with $\angle R = 90^{\circ}$ , If $P Q$=$13$, $Q R$=$5$, $P R$=$12$, find the values of $\tan P$, $\sec Q$, $\csc Q$, $\sin P$.



  6. $\tan P=\dfrac{Q R}{P R}=\dfrac{5}{12}$
    $\sec Q=\dfrac{P Q}{P R}=\dfrac{13}{12}$
    $\csc Q=\dfrac{P Q}{Q R}=\dfrac{13}{5}$
    $\sin P=\dfrac{Q R}{P Q}=\dfrac{5}{13}$

  7. Calculate each of the following for a right $\triangle P Q R$ with $\angle R = 90^{\circ}$.
    (i) ($\cos P$)($\sec P$) (ii) ($\tan Q$)($\cot Q$) (iii) ($\sin P$)($\csc P$)
    (iv) $\sec^{2}Q$ - $\tan^{2}Q$ (v) $\sin^{2}P$ + $\cos^{2}P$ (vi) $\csc^{2}Q$ - $\cot^{2}Q$



  8. (i) $(\cos p)(\sec p)=\dfrac{q}{r} \times \dfrac{r}{q}=1$
    (ii) $(\tan \theta)(\cot Q)=\dfrac{q}{p} \times \dfrac{p}{q}=1$
    (iii) $(\sin P)(\csc P)=\dfrac{p}{r} \times \dfrac{r}{p}=1$
    $\begin{aligned} (iv)\sec ^{2} Q-\tan ^{2} Q&=\left(\dfrac{r}{p}\right)^{2}-\left(\dfrac{q}{p}\right)^{2}\\ &=\dfrac{r^{2}}{p^{2}}-\dfrac{q^{2}}{p^{2}} \\ &=\dfrac{r^{2}-q^{2}}{p^{2}} \\ &=\dfrac{p^{2}}{p^{2}}\\ &=1 \end{aligned}$
    $\begin{aligned} (v) \sin ^{2} p+\cos ^{2} P &=\left(\dfrac{p}{r}\right)^{2}+\left(\dfrac{q}{r}\right)^{2} \\ &=\dfrac{p^{2}}{r^{2}}+\dfrac{q^{2}}{r^{2}} \\ &=\dfrac{p^{2}+q^{2}}{r^{2}} \\ &=\dfrac{r^{2}}{r^{2}} \\ &=1 \end{aligned}$
    $\begin{aligned} (vi) \csc ^{2} Q-\cot ^{2} Q&=\left(\dfrac{r}{q}\right)^{2}-\left(\dfrac{p}{q}\right)^{2}\\ &=\dfrac{r^{2}}{q^{2}}-\dfrac{p^{2}}{q^{2}} \\ &=\dfrac{r^{2}-p^{2}}{q^{2}} \\ &=\dfrac{q^{2}}{q^{2}}\\ &=1 \end{aligned}$

  9. $P Q R S$ is a quadrilateral in which $\angle P S R$= $90^{\circ}$. If the diagonal $P R$ is at right angles to $R Q$, and $R P$ =$21$, $R S$ = $16$, find $\sin \angle P R S$, $\tan \angle R P S$, $\cos \angle R P Q$, and $\csc\angle P Q R$.



  10. In right $\triangle P S R$,
    $\begin{aligned} P S^{2} &=P R^{2}-S R^{2} \\ &=20^{2}-16^{2} \\ &=400-256 \\ &=144 \\ P S &=12 \end{aligned}$
    In right $\triangle P R Q$,
    $\begin{aligned} P Q^{2} &=P R^{2}+Q R^{2} \\ &=20^{2}+21^{2} \\ &=400+441 \\ &=841 \\ P Q &=29 \end{aligned}$
    $\begin{aligned} \sin \angle P R S &=\dfrac{P S}{P R} \\ &=\dfrac{12}{20} \\ &=\dfrac{3}{5} \\ \tan \angle R P S &=\dfrac{S R}{P S} \\ &=\dfrac{16}{12} \\ &=\dfrac{4}{3} \\ \cos \angle R P Q &=\dfrac{P R}{P Q} \\ &=\dfrac{20}{29} \\ \csc \angle P Q R &=\dfrac{P Q}{P R} \\ &=\dfrac{29}{20} \end{aligned}$

Exercise 10.3

Prove the following identities.
  1. $ \cot \theta\sqrt{1-cos^{2}\theta}$ = $\cos \theta$.


  2. $\begin{aligned} \cot \theta \sqrt{1-\cos ^{2} \theta}&=\cot \theta \sqrt{\sin ^{2} \theta}\\ &=\cot \theta \sin \theta\\ &=\dfrac{\cos \theta}{\sin \theta} \times \sin \theta\\ &=\cos \theta\\ \end{aligned}$

  3. $\dfrac{\tan^{2}\theta+1}{\tan^{2}\theta \csc^{2}\theta}$ = $\tan \theta$.


  4. $\begin{aligned} \dfrac{\tan ^{2} \theta+1}{\tan \theta \csc ^{2} \theta} &=\dfrac{\sec ^{2} \theta}{\dfrac{\sin \theta}{\cos \theta} \times \dfrac{1}{\sin ^{2} \theta}} \\ &=\dfrac{\dfrac{1}{\cos ^{2} \theta}}{\dfrac{1}{\sin \theta \cos \theta}} \\ &=\dfrac{1}{\cos ^{2} \theta} \times \sin \theta \cos \theta \\ &=\dfrac{\sin \theta}{\cos \theta}\\ &=\tan \theta \end{aligned}$

  5. ($1$ - $\sin^{2}\theta$)($1$ + $\cot^{2}\theta$) = $\cot^{2}\theta$.


  6. $\begin{aligned} \left(1-\sin ^{2} \theta\right)\left(1+\cot ^{2} \theta\right) &=\cos ^{2} \theta \csc ^{2} \theta \\ &=\cos ^{2} \theta \times \dfrac{1}{\sin ^{2} \theta} \\ &=\left(\dfrac{\cos \theta}{\sin \theta}\right)^{2} \\ &=\cot ^{2} \theta \end{aligned}$

  7. $\tan^{2}\theta$ - $\cot^{2}\theta$ = $\sec^{2}\theta$ - $\csc^{2}\theta$.


  8. $\begin{aligned} \tan ^{2} \theta-\cot ^{2} \theta &=\sec ^{2} \theta-1-\left(\csc ^{2} \theta-1\right)\quad(\because 1+\tan ^{2} \theta=\sec ^{2} \theta) \\ &=\sec ^{2} \theta-1-\csc ^{2} \theta+1 \\ &=\sec ^{2} \theta-\csc ^{2} \theta \end{aligned}$

  9. $\sin\theta$sec$ \theta\sqrt{csc^{2}\theta - 1}$ = $1$.


  10. $\begin{aligned} \sin \theta \sec \theta \sqrt{\csc ^{2} \theta-1}&=\sin \theta \sec \theta \sqrt{\cot ^{2} \theta}\quad(\because 1+\cot ^{2} \theta=\csc ^{2} \theta) \\ &= \sin \theta \sec \theta \cot \theta\\ &= \sin \theta \times \dfrac{1}{\cos \theta} \times \dfrac{\cos\theta}{\sin \theta}\quad(\because \sec\theta=\dfrac{1}{\cos\theta},\cot\theta=\dfrac{\cos\theta}{\sin\theta}) \\ &= 1 \end{aligned}$

  11. $\sec^{2}\theta$ + $\csc^{2}\theta$ = $\sec^{2}\theta$$\csc^{2}\theta$.


  12. $\begin{aligned} \sec ^{2} \theta+\csc ^{2} \theta &=\dfrac{1}{\cos ^{2} \theta}+\dfrac{1}{\sin ^{2} \theta} \\ &=\dfrac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \sin ^{2} \theta} \\ &=\dfrac{1}{\cos ^{2} \theta \sin ^{2} \theta}\quad(\because\sin ^{2} \theta+\cos ^{2} \theta=1) \\ &=\sec ^{2} \theta \csc^{2} \theta\quad(\because\dfrac{1}{\cos \theta}=\sec \theta, \dfrac{1}{\sin \theta}=\csc\theta) \end{aligned}$

  13. ($1$ + $\tan^{2}\theta$)($1$ - $\sin^{2}\theta$) = $1$.


  14. $\begin{aligned} \left(1+\tan ^{2} \theta\right)\left(1-\sin ^{2} \theta\right) &=\sec ^{2} \theta \cos ^{2} \theta \\ &=\dfrac{1}{\cos ^{2} \theta} \times \cos ^{2} \theta \\ &=1 \end{aligned}$

  15. ($1$ + $\tan\theta$)$^{2}$($1$ - $\tan\theta$)$^{2}$ = $2\sec^{2}\theta$.


  16. $\begin{aligned} (1+\tan \theta)^{2}+(1-\tan \theta)^{2}&=1+2 \tan ^{2} \theta+\tan ^{2} \theta+1-2 \tan ^{2} \theta+\tan ^{2} \theta\\ &=2+2 \tan ^{2} \theta \\ &=2\left(1+\tan ^{2} \theta\right) \\ &=2 \sec ^{2} \theta \quad(\because 1+\tan ^{2} \theta=\sec ^{2} \theta) \end{aligned}$

  17. $\sec^{2}\theta\cot^{2}\theta$ - $1$ = $\cot^{2}\theta$.


  18. $\begin{aligned} \sec ^{2} \theta \cot ^{2} \theta-1 &=\dfrac{1}{\cos ^{2} \theta} \times \dfrac{\cos ^{2} \theta}{\sin ^{2} \theta}-1\quad(\because \sec \theta=\dfrac{1}{\cos \theta}, \cot \theta=\dfrac{\cos \theta}{\sin \theta}) \\ &=\dfrac{1}{\sin ^{2} \theta}-\dfrac{\sin ^{2} \theta}{\sin ^{2} \theta} \\ &=\dfrac{1-\sin ^{2} \theta}{\sin ^{2} \theta} \\ &=\dfrac{\cos ^{2} \theta}{\sin ^{2} \theta} \\ &=\cot ^{2} \theta \end{aligned}$

  19. $\dfrac{1}{1 - \sin\theta}$ + $\dfrac{1}{1 + \sin\theta}$ = $2\sec^{2}\theta$.


  20. $\begin{aligned} \dfrac{1}{1-\sin \theta}+\dfrac{1}{1+\sin \theta} &=\dfrac{1+\sin \theta+1-\sin \theta}{(1-\sin \theta)(1+\sin \theta)} \\ &=\dfrac{2}{1-\sin ^{2} \theta} \\ &=\dfrac{2}{\cos ^{2} \theta} \\ &=2 \sec ^{2} \theta\quad(\because \dfrac{1}{\cos \theta}=\sec \theta) \end{aligned}$

  21. $\dfrac{1}{\sin^{2}\theta}$ - $\dfrac{1}{\tan^{2}\theta}$ = $1$.


  22. $\begin{aligned} \dfrac{1}{\sin ^{2} \theta}-\dfrac{1}{\tan ^{2} \theta} &=\dfrac{1}{\sin ^{2} \theta}-\frac{1}{\dfrac{\sin ^{2} \theta}{\cos ^{2} \theta}}\quad(\because \tan \theta=\dfrac{\sin \theta}{\cos \theta}) \\ &=\dfrac{1}{\sin ^{2} \theta}-\dfrac{\cos ^{2} \theta}{\sin ^{2} \theta} \\ &=\dfrac{1-\cos ^{2} \theta}{\sin ^{2} \theta} \\ &=\dfrac{\sin ^{2} \theta}{\sin ^{2} \theta}\quad(\because \sin ^{2} \theta + \cos ^{2} \theta=1 ) \\ &=1 \end{aligned}$

  23. ($\tan \theta$ + $\sec \theta$)$^{2}$ = $\dfrac{1 + \sin\theta}{1 - \sin\theta}$.


  24. $\begin{aligned} (\tan \theta+\sec \theta)^{2} &=\left(\dfrac{\sin \theta}{\cos \theta}+\dfrac{1}{\cos \theta}\right)^{2} \\ &=\left(\dfrac{\sin \theta+1}{\cos \theta}\right)^{2} \\ &=\dfrac{(\sin \theta+1)^{2}}{\cos ^{2} \theta} \\ &=\dfrac{(1+\sin ^{2}\theta)^{2}}{1-\sin ^{2} \theta}\\ &=\dfrac{(1+\sin \theta)^{2}}{(1+\sin \theta)(1-\sin \theta)} \\ &=\dfrac{1+\sin \theta}{1-\sin \theta} \end{aligned}$

  25. $\sin^{4}\theta$ - $\cos^{4}\theta$ = $1$ - $2\cos^{2}\theta$.


  26. $\begin{aligned} \sin ^{4} \theta-\cos ^{4} \theta &=\left(\sin ^{2} \theta\right)^{2}-\left(\cos ^{2} \theta\right)^{2} \\ &=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right) \\ &=1\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\quad(\because \sin ^{2} \theta+\cos ^{2} \theta=1) \\ &=1\left(1-\cos ^{2} \theta-\cos ^{2} \theta\right) \\ &=1-2 \cos ^{2} \theta \end{aligned}$

  27. $\dfrac{\tan^{2}\theta+1}{\tan^{2}\theta}$ = $\csc^{2}\theta$.


  28. $\begin{aligned} \dfrac{\tan ^{2} \theta+1}{\tan ^{2} \theta} &=\dfrac{\sec ^{2} \theta}{\tan ^{2} \theta}\quad(\because 1+\tan ^{2} \theta=\sec ^{2} \theta) \\ &=\dfrac{\dfrac{1}{\cos ^{2} \theta}}{\dfrac{\sin ^{2} \theta}{\cos ^{2} \theta}}\quad(\because \sec \theta=\dfrac{1}{\cos \theta}, \tan \theta=\dfrac{\sin \theta}{\cos \theta}) \\ &=\dfrac{1}{\sin ^{2} \theta} \\ &=\csc ^{2} \theta\quad(\because \dfrac{1}{\sin\theta}=\csc\theta) \end{aligned}$

  29. $\sin^{2}\theta$$\tan\theta$ + $\cos^{2}\theta$$\cot\theta$ + $2sin\theta\cos\theta$ = $\tan\theta$ + $\cot\theta$.


  30. $\begin{aligned} \sin ^{2} \theta \tan \theta+\cos ^{2} \theta \cot \theta+2 \sin \theta \cos \theta &=\sin ^{2} \theta \times \dfrac{\sin \theta}{\cos \theta}+\cos ^{2} \theta \times \dfrac{\cos \theta}{\sin \theta}+2 \sin \theta \cos \theta \\ &=\dfrac{\sin ^{3} \theta}{\cos \theta}+\dfrac{\cos ^{3} \theta}{\sin\theta}+2 \sin \theta \cos \theta \\ &=\dfrac{\sin ^{4} \theta+\cos ^{4} \theta+2 \sin ^{2} \theta \cos^{2} \theta}{\sin \theta \cos \theta} \\ &=\dfrac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}}{\sin \theta \cos \theta} \\ &=\dfrac{(1)^{2}}{\sin \theta \cos \theta}\quad(\because \sin ^{2} \theta+\cos ^{2} \theta=1) \\ &=\dfrac{1}{\sin \theta \cos \theta} \\ &=\dfrac{\sin^{2 } \theta+\cos ^{2} \theta}{\sin \theta \cos \theta} \\ &=\dfrac{\sin^{2} \theta}{\sin \theta \cos \theta}+\dfrac{\cos ^{2} \theta}{\sin \theta \cos \theta}\\ &=\dfrac{\sin \theta}{\cos \theta}+\dfrac{\cos \theta}{\sin \theta}\\ &=\tan \theta+\cot \theta \end{aligned}$

  31. Find the value of acute angle $\alpha$ in each of the following equations:
    (a) $\cos 2\alpha$ = $\sin 7\alpha$ (b) $\tan 3\alpha$ = $\cot 2\alpha$ (c) $\sec \alpha$ = $\csc 5\alpha$


  32. $\begin{aligned} (a) \cos 2 \alpha&=\sin 7 \alpha\\ \cos 2 \alpha &=\cos \left(90^{\circ}-7 \alpha\right)\quad (\because \cos (90^{\circ} - \alpha)=\sin\alpha) \\ 2 \alpha &=90^{\circ}-7 \alpha \\ 9 \alpha &=90^{\circ} \\ \alpha &=10^{\circ} \end{aligned}$
    $\begin{aligned} (b) \tan 3 \alpha&=\cot 2 \alpha\\ \tan 3 \alpha&=\tan \left(90^{\circ}-2 \alpha\right)\quad (\because \tan (90^{\circ} - \alpha)=\cot\alpha) \\ 3 \alpha&=90^{\circ}-2 \alpha\\ 5 \alpha&=90^{\circ}\\ \alpha&=18^{\circ}\\ \end{aligned}$
    $\begin{aligned} (c) \sec \alpha&=\csc 5 \alpha\\ \sec \alpha &=\sec \left(90^{\circ}-5 \alpha\right)\quad (\because \sec (90^{\circ} - \alpha)=\csc\alpha) \\ \alpha &=90^{\circ}-5 \alpha \\ 6 \alpha &=90^{\circ} \\ \alpha &=15^{\circ} \end{aligned}$

  33. Prove the identity $\cos (90^{\circ}-\alpha$)$\tan (90^{\circ}-\alpha$) = $\cos \alpha$.


  34. $\begin{aligned} \cos \left(90^{\circ}-\alpha\right) \tan \left(90^{\circ}-\alpha\right) &=\sin \alpha \cot \alpha \\ &=\sin \alpha \times \dfrac{\cos \alpha}{\sin \alpha} \\ &=\cos \alpha \end{aligned}$

  35. Prove the identity $\sin (90^{\circ}-\alpha$)$\sec (90^{\circ}-\alpha$) = $\cot \alpha$.


  36. $\begin{aligned} \sin \left(90^{\circ}-\alpha\right) \sec \left(90^{\circ}-\alpha\right) &=\cos \alpha \csc \alpha \\ &=\cos \alpha \times \frac{1}{\sin \alpha} \\ &=\dfrac{\cos \alpha}{\sin \alpha} \\ &=\cot \alpha \end{aligned}$

Exercise 10.4

  1. Draw a right triangle and find $\angle A$.
    (a) $\sin A$ = $\dfrac{1}{2}$  (b) $\cos A$ = $\dfrac{\sqrt{3}}{2}$
    (c) $\tan A$ = $\sqrt{3}$  (d) $\cot A$ = $1$
    (e) $\sec A$ = $\sqrt{2}$  (f) $\csc A$ = $2$


  2. Figure for (a),(b),(c)and(f).

    Figure for (d) and (e).

    $\begin{aligned} \text{ (a) } \sin A&=\dfrac{1}{2}\\ &=\sin 30^{\circ} \\ \therefore \angle A &=30^{\circ} \end{aligned}$

    $\begin{aligned} \text{ (b) }\cos A&=\dfrac{\sqrt{3}}{2}\\ &=\cos 30^{\circ} \\ \therefore \angle A &=30^{\circ} \end{aligned}$

    $\begin{aligned} \text{ (c) } \tan A&=\sqrt{3}\\ &=\tan 60^{\circ} \\ \therefore \angle A &=60^{\circ} \end{aligned}$

    $\begin{aligned} \text{ (d) }\cot A&=1\\ \cot A &=1 \\ &=\cot 45^{\circ} \\ \therefore \angle A &=45^{\circ} \end{aligned}$

    $\begin{aligned} \text{ (e) }\sec A&=\sqrt{2}\\ &=\sec 45^{\circ} \\ \therefore\angle A &=45^{\circ} \end{aligned}$

    $\begin{aligned} \text{ (f) } \csc A&=2\\ &=\csc 30^{\circ} \\ \therefore \angle A &=30^{\circ} \end{aligned}$

    For each of the right triangles $A B C$, find the indicated sides.
  3. $\angle A$ = $30^{\circ}$, $c$ = $30$ , find $a$.



  4. $\begin{aligned} \dfrac{a}{c} &=\sin 30^{\circ} \\ a &=c \sin 30^{\circ} \\ &=30 \times \dfrac{1}{2} \\ &=15 \end{aligned}$

  5. $\angle A$ = $60^{\circ}$, $a$ = $15$ , find $b$.



  6. $\begin{aligned} \dfrac{b}{a} &=\cot A \\ b &=a \cot A \\ &=15 \cot 60^{\circ} \\ &=15 \times \frac{\sqrt{3}}{3} \\ &=5 \sqrt{3} \end{aligned}$

  7. $\angle B$ = $45^{\circ}$, $a$ = $16$ , find $c$.



  8. $\begin{aligned} \angle B &=45^{\circ}, a=16, c=? \\ \dfrac{c}{a} &=\sec 45^{\circ} \\ c &=a \sec 45^{\circ} \\ &=16 \sqrt{2} \end{aligned}$

  9. $\angle B$ = $30^{\circ}$, $b$ = $8$ , find $c$.



  10. $\begin{aligned} \angle B &=30^{\circ}, b=8, c=? \\ \dfrac{c}{b} &=\csc 30^{\circ} \\ c &=b \csc 30^{\circ} \\ &=8 \times 2 \\ &=16 \end{aligned}$

  11. A ladder is placed along a wall such that it upper end is touching the top of the wall. The foot of the ladder is $5$ ft away from the wall and the ladder is making an angle of $60^{\circ}$ with the level of the ground. Find the height of the wall.



  12. $\begin{aligned} \dfrac{B C}{5} &=\tan 60^{\circ} \\ B C &=5 \tan 60^{\circ} \\ &=5 \sqrt{3} \end{aligned}$
    The height of the wall $=5 \sqrt{3} \mathrm{~ft}$

    Find the numerical value of:
  13. $\cot^{3}45^{\circ}$ + $4$ $\sin^{3}30^{\circ}$


  14. $\begin{aligned} \cot ^{3} 45^{\circ}+4 \sin ^{3} 30^{\circ}&=1^{3}+4\left(\dfrac{1}{2}\right)^{3}\\ &=1+\dfrac{1}{2}\\ &=\dfrac{3}{2} \end{aligned}$

  15. $\tan60^{\circ}$$\cot30^{\circ}$ + $4$ $\sec^{2}30^{\circ}$


  16. $\begin{aligned} \tan 60^{\circ} \cot 30^{\circ}+4 \sec ^{2} 30^{\circ} &=\sqrt{3} \sqrt{3}+4\left(\frac{2 \sqrt{3}}{3}\right)^{2} \\ &=3+4\left(\dfrac{12}{9}\right) \\ &=\dfrac{9+16}{3} \\ &=\dfrac{25}{3} \end{aligned}$

  17. $\tan^{2}45^{\circ}$ + $\sin30^{\circ}$ - $\cos^{2}30^{\circ}$ + $2$ $\tan^{2}60^{\circ}$


  18. $\begin{aligned} \tan ^{2} 45^{\circ}+\sin 30^{\circ}-\cos ^{2} 30^{\circ}+2 \tan ^{2} 60^{\circ} &=1^{2}+\dfrac{1}{2}-\left(\dfrac{\sqrt{3}}{2}\right)^{2}+2(\sqrt{3})^{2} \\ &=1+\dfrac{1}{2}-\dfrac{3}{4}+6 \\ &=\dfrac{28+2-3}{4} \\ &=\dfrac{27}{4} \end{aligned}$

  19. $\dfrac{1}{2}$ $\sec^{2}30^{\circ}$ + $\csc^{2}45^{\circ}$ - $2$ $\tan^{2}30^{\circ}$


  20. $\begin{aligned} \dfrac{1}{2} \sec ^{2} 30^{\circ}+\csc ^{2} 45^{\circ}-2 \tan ^{2} 30^{\circ} &=\dfrac{1}{2}\left(\dfrac{2 \sqrt{3}}{3}\right)^{2}+(\sqrt{2})^{2}-2\left(\dfrac{\sqrt{3}}{3}\right)^{2} \\ &=\dfrac{1}{2} \times \dfrac{12}{9}+2-2 \times \dfrac{3}{9} \\ &=\dfrac{2}{3}+2-\dfrac{2}{3} \\ &=2 \end{aligned}$

Exercise 10.5

  1. Solve the triangles:
    (a) $\angle A$ = $90^{\circ}$, $a$ = $4$ , $c$ =$2\sqrt{3}$.
    (b) $\angle B$ = $90^{\circ}$, $c$ = $6$ , $b$ =$12$.
    (c) $\angle C$ = $90^{\circ}$, $\angle A$ = $30^{\circ}$ , $a$ =$6\sqrt{3}$.
    (d) $\angle A$ = $30^{\circ}$, $\angle B$ = $60^{\circ}$ , $b$ =$10\sqrt{3}$.


  2. (a)$\angle A=90^{\circ}$, $a$ = $4$, $c$ = $2 \sqrt{3}$

    In right $\triangle B A C $,
    $\begin{aligned} b^{2} &=a^{2}-c^{2} \\ &=4^{2}-(2 \sqrt{3})^{2} \\ &=16-12 \\ &=4 \\ b &=2 \\ \sin B &=\dfrac{b}{a} \\ &=\dfrac{2}{4} \\ &=\dfrac{1}{2} \\ &=\sin 30^{\circ} \\ \therefore \angle B &=30^{\circ} \\ \angle C &=90^{\circ}-\angle B \\ &=90^{\circ}-30^{\circ} \\ &=60^{\circ} \\ \therefore b &=2, \angle C=60^{\circ}, \angle B=30^{\circ} \end{aligned}$

    (b)$\angle B$ = $90^{\circ}$,$ c$ = $6$, $b$ = $12$

    In right $\triangle A B C$,
    $\begin{aligned} a^{2} &=b^{2}-c^{2} \\ &=12^{2}-6^{2} \\ &=144-36 \\ &=108 \\ a &=6 \sqrt{3} \\ \sin A &=\dfrac{a}{b} \\ &=\dfrac{6 \sqrt{3}}{12} \\ &=\dfrac{\sqrt{3}}{2} \\ &=\sin 60^{\circ} \\ \therefore \angle A &=60^{\circ} \\ \angle C &=90^{\circ}-\angle A \\ &=90^{\circ}-60^{\circ} \\ &=30^{\circ} \\ a=6 \sqrt{3}, & \angle A=60, \angle B=30^{\circ} \end{aligned}$

    (c) $ \angle C $ = $90^{\circ}$, $\angle A$ = $30^{\circ}$, $a$ = $6\sqrt{3}$

    $\angle B $ = $90^{\circ}$ - $\angle A$
    $ \begin{aligned} &=90^{\circ}-30^{\circ}=60^{\circ} \\ \dfrac{b}{a} &=\tan B \\ b &=a \tan 60^{\circ} \\ &=6 \sqrt{3} \times \sqrt{3} \\ &=18 \\ \dfrac{a}{c} &=\sin A \\ c &=\dfrac{a}{\sin A} \\ &=\dfrac{6 \sqrt{3}}{\sin 30^{\circ}} \\ &=\dfrac{6 \sqrt{3}}{\dfrac{1}{2}} \\ &=12 \sqrt{3} \\ \therefore c &=12 \sqrt{3}, b=18, \angle B=60^{\circ} \end{aligned}$

    (d) $\angle A$ = $30^{\circ}$, $\angle B$ = $60^{\circ}$, $b$ = $10 \sqrt{3}$

    $\therefore \angle C$ = $90^{\circ}$
    $\begin{aligned} \dfrac{a}{b}&=\tan A\\ a&=b \tan 30^{\circ}\\ &=10 \sqrt{3} \times \dfrac{\sqrt{3}}{3}\\ &=10\\ \dfrac{a}{c}&=\sin A\\ c &=\dfrac{a}{\sin A} \\ &=\dfrac{10}{\dfrac{1}{2}} \\ &=20 \\ \therefore a &=10, c=20, \angle C=90^{\circ} \end{aligned}$

  3. Given $\triangle A B C $ with $\angle A$ = $30^{\circ}$,$\angle B$ = $135^{\circ}$ and $ A B$ = $100$ . Find the length of the perpendicular from $C$ to $ A B $ produced.



  4. $\angle A=30^{\circ}, \angle B=135^{\circ}$ and $A B=100, C D=$ ?
    Draw CD perpendicular to $A B$ produced.
    $\angle C B D=180^{\circ}-135^{\circ}=45^{\circ}$
    since $\triangle B D C$ is a $45^{\circ}-45^{\circ}$ right triangle,
    Let $B D=D C=x$
    In right $\triangle A D C$,
    $\begin{aligned} \dfrac{C D}{A D}&=\tan A\\ C D&=A D \tan 30^{\circ}\\ x&=(100+x) \dfrac{\sqrt{3}}{3}\\ 3 x&=100 \sqrt{3}+\sqrt{3} x\\ (3-\sqrt{3}) x &=100 \sqrt{3} \\ x &=\dfrac{100 \sqrt{3}}{3-\sqrt{3}} \times \dfrac{3+\sqrt{3}}{3+\sqrt{3}} \\ &=\dfrac{300 \sqrt{3}+300}{3^{2}-(\sqrt{3})^{2}}\\ x &=\dfrac{300 \sqrt{3}+300}{9-3} \\ &=\dfrac{6(50 \sqrt{3}+50)}{6} \\ x &=50 \sqrt{3}+50 \\ \therefore C D &=50+50 \sqrt{3} \end{aligned}$

  5. If $ B D $ is perpendicular to the base $ A C $ of a triangle $ A B C $ , find $a$ and $c$, given $\angle A$ = $30^{\circ}$,$\angle C$ = $45^{\circ}$, $ B D $ = $10$.



  6. $B D \perp A C, \angle A=30^{\circ}, \angle C=45^{\circ}$, $B D=10, a, c=$ ?
    In right $\triangle A D B$,
    $\begin{aligned} \dfrac{c}{10} &=\csc A \\ c &=10 \csc 30^{\circ} \\ &=10 \times 2 \\ &=20 \\ \end{aligned}$
    In right $\triangle C D B$,
    $\begin{aligned} \dfrac{10}{a}&=\sin 45^{\circ}\\ a &=\dfrac{10}{\sin 45^{\circ}} \\ &=\dfrac{10}{\dfrac{\sqrt{2}}{2}} \\ &=\dfrac{20}{\sqrt{2}} \\ &=10 \sqrt{2} \\ \therefore a &=10 \sqrt{2}, c=20 \end{aligned}$

  7. In the triangle $ A B C $, the angle $B$ and $C$ are equal to $45^{\circ}$ and $120^{\circ}$ respectively; if $a$ = $40$, find the length of the perpendicular from $A$ on $ B C $ produced.



  8. Draw AD perpendicular to BC produced.
    $\angle A C D=180^{\circ}-120^{\circ}=60^{\circ}$
    since $\triangle A D C$ is a $30^{\circ}-60^{\circ}$ right triangle,
    Let $C D=x$
    $A D=\sqrt{3} x, A C=2 x$
    In right $\triangle A D B$,
    $\begin{aligned} \dfrac{A D}{B D}&=\tan 45^{\circ}\\ \dfrac{\sqrt{3} x}{40+x} &=1 \\ \sqrt{3} x&=40+x \\ (\sqrt{3}-1) x &=40 \\ x &=\dfrac{40}{\sqrt{3}-1} \times \dfrac{\sqrt{3}+1}{\sqrt{3}+1} \\ &=\dfrac{40(\sqrt{3}+1)}{\sqrt{3}^{2}-1^{2}}\\ &=\dfrac{40(\sqrt{3}+1)}{3-1} \\ &=\dfrac{40(\sqrt{3}+1)}{2} \\ x &=20+20 \sqrt{3} \\ \text { AD } &=\sqrt{3} x \\ &=\sqrt{3}(20+20 \sqrt{3}) \\ &=60+20 \sqrt{3} \end{aligned}$

  9. Solve the isosceles triangle. (Draw the perpendicular from the vertex to the base.)
    (a) $b$ = $c$ = $12$, $\angle B$ = $30^{\circ}$.
    (b) $a$ = $b$ = $9$, $\angle A$ = $60^{\circ}$.
    (c) $b$ = $c$ = $10$, $\angle A$ = $120^{\circ}$.


  10. (a) $b$ = $c$ = $12$, $\angle B$ = $30^{\circ}$

    $\begin{aligned} b=c&=12, \angle B=\angle C=30^{\circ}\\ \angle B A C&=180^{\circ}-(\angle B+\angle C)\\ &=180^{\circ}-\left(30^{\circ}+30^{\circ}\right) \\ &=120^{\circ}\\ \text{ Draw } A D &\perp B C\\ \text{ In right } \triangle& A D B,\\ \dfrac{B D}{A B} &=\cos B \\ \dfrac{B D}{c} &=\cos 30^{\circ} \\ B D &=c \cos 30^{\circ} \\ &=12 \times \dfrac{\sqrt{3}}{2} \\ &=6 \sqrt{3} \\ \text { similarly }, D C&=6 \sqrt{3} \\ B C &=B D+D C \\ &=6 \sqrt{3}+6 \sqrt{3} \\ &=12 \sqrt{3} \end{aligned}$

    (b) $a$ = $b$ = $9$, $\angle A$ = $60^{\circ}$

    $\begin{aligned} a=b &=9, \angle A=\angle B=60^{\circ} \\ \angle C &=180^{\circ}-(\angle A+\angle B) \\ &=180^{\circ}-\left(60^{\circ}+60^{\circ}\right) \\ &=60^{\circ} \\ \triangle&A B C \text{ is an equilateral triangle }.\\ \therefore a &=b=c=9 \\ \therefore A B&=9 \end{aligned}$

    (c) $b$ = $c$ = $10$, $\angle A$ = $120^{\circ}$

    $\begin{aligned} b=c&=10, \quad \angle A=120^{\circ}\\ \angle B&=\angle C=\dfrac{180^{\circ}-\angle A}{2}\\ &=\dfrac{180^{\circ}-120^{\circ}}{2}\\ &=30^{\circ}\\ \text{ Draw } AD &\perp B C\\ \text{ In right } \triangle& A D B,\\ \dfrac{B D}{A B}&=\cos A\\ \dfrac{B D}{c}&=\cos 30^{\circ}\\ B D&=c \cos 30^{\circ}\\ B D&=10 \times \dfrac{\sqrt{3}}{2}\\ &=5 \sqrt{3}\\ \text { similarly }, D C&=5 \sqrt{3} \\ B C&=B D+D C\\ &=5 \sqrt{3}+5 \sqrt{3}\\ &=10 \sqrt{3}\\ \end{aligned}$

  11. In $\triangle A B C $, $\angle A$ = $60^{\circ}$,$ A C$ = $12$ and $A B$ = $20$. Find the length of the perpendicular drawn from $C$ to $ A B $. Also find the area of the triangle $ A B C $.



  12. In $\triangle A B C$,
    $\angle A=60^{\circ}, A C=12, A B=20$
    Draw CD $\perp A B$.
    In right $\triangle A D C$,
    $\begin{aligned} \dfrac{C D}{A C}&=\sin 60^{\circ}\\ C D&=A C \sin 60^{\circ}\\ &=12 \times \dfrac{\sqrt{3}}{2}\\ &=6 \sqrt{3}\\ \end{aligned}$
    $\begin{aligned} \text{ The area of } \triangle A B C &=\dfrac{1}{2} \times A B \times C D \\ &=\dfrac{1}{2} \times 20 \times 6 \sqrt{3} \\ &=60 \sqrt{3} \text { square units } \end{aligned}$

  13. Find the area of triangle $ A B C $, given $A B$ = $30$, $B C$ = $16$ and $\angle B$ = $30^{\circ}$.



  14. In $\triangle A B C$
    $A B=30, B C=16, \angle B=30^{\circ}$
    Draw $C D \perp A B$.
    In right $\triangle B D C$,
    $\begin{aligned} \dfrac{C D}{B C} &=\sin 30^{\circ} \\ C D &=B C \sin 30^{\circ} \\ &=16 \times \dfrac{1}{2} \\ &=8 \end{aligned}$
    $\begin{aligned} \text{ The area of } \triangle A B C&=\dfrac{1}{2} \times A B \times C D\\ &=\dfrac{1}{2} \times 30 \times 8 \\ &=120 \text { square units } \end{aligned}$

  15. Solve the triangle $ A B C $, $\angle B$ = $90^{\circ}$,$\angle A$ = $36^{\circ}$ and $c$ = $100$. Using as much of the information below as necessary.
    [ $\tan 36^{\circ}$ = $0.7265$, $\sec 36^{\circ}$ = $1.2361$ ]



  16. $\begin{aligned} \angle B &=90^{\circ}, \angle A=36^{\circ}, C=100 \\ \angle C &=180^{\circ}-(\angle A+\angle B) \\ &=180^{\circ}-\left(36^{\circ}+90^{\circ}\right) \\ &=54^{\circ} \\ \dfrac{a}{c} &=\tan A \\ a &=c \tan 36^{\circ} \\ &=100 \times 0.7265 \\ &=72.65 \\ \dfrac{b}{c} &=\sec A \\ b &=c \sec 36^{\circ} \\ &=100 \times 1.2361 \\ &=123.61 \\ \therefore \angle C &=54{ }^{\circ}, a=72.65, b=123.61 \end{aligned}$

  17. Solve the triangle $ A B C $, $\angle A$ = $90^{\circ}$,$c$ = $37$ and $a$ = $100$. Using as much of the information below as necessary.
    [ $\sin 21^{\circ}43^{'}$ = $0.3700$, $\cos 21^{\circ}43^{'}$ = $0.9290$ ]



  18. $\begin{aligned} \angle A=90^{\circ}, c &=37, a=100 \\ \sin C &=\dfrac{c}{a} \\ & =\dfrac{37}{100} \\ &=0.37 \\ &=\sin 21^{\circ} 43^{\prime} \\ \therefore\angle C &=21^{\circ} 43^{\prime} \\ \angle B &=180^{\circ}-(\angle A+\angle C) \\ &=180^{\circ}-\left(90^{\circ}+21^{\circ} 43^{\prime}\right) \\ &=68^{\circ} 17^{\prime} \\ \dfrac{b}{a} &=\cos C \\ b &=a \cos 21^{\circ} 17^{\prime} \\ &=100 \times 0.9290 \\ &=92.9 \end{aligned}$
    $ \therefore \angle B =68^{\circ} 17^{\prime}, \angle C=21^{\circ} 43^{\prime}, b=92.9$

Exercise 10.6

  1. A mountain railway runs for $400$ yards at a uniform slope of $30^{\circ}$ with the horizontal. What is the horizontal distance between its two ends?



  2. $\begin{aligned} \dfrac{A B}{A C} &=\cos A \\ A B &=A C \cos A \\ &=400 \cos 30^{\circ} \\ &=400 \times \dfrac{\sqrt{3}}{2} \\ &=200 \sqrt{3} \end{aligned}$
    The horizontal distance between its two ends $=200 \sqrt{3}$ yards.

  3. A vertical mast is secured from its top by straight cables $600$ ft long fixed into the ground. Each cable makes angle of $60^{\circ}$ with the ground. What is the height of the mast?



  4. $\begin{aligned} \dfrac{B C}{A C} &=\sin A \\ B C &=A C \sin A \\ &=600 \sin 60^{\circ} \\ &=600 \times \dfrac{\sqrt{3}}{2} \\ &=300 \sqrt{3} \end{aligned}$
    The height of the mast $=300 \sqrt{3} \mathrm{~ft}$.

  5. A kite flying at a height of $60$ yards is attached to a string inclined at $45^{\circ}$ to the horizontal. What is the length of the string? Assume there is no slack in the string.



  6. $\begin{aligned} \dfrac{A C}{B C} &=\csc A \\ A C &=B C \csc A \\ &=60 \csc 45^{\circ} \\ &=60 \sqrt{3} \end{aligned}$
    The length of the setring $=60 \sqrt{3}$ yards.

  7. An observer, $6$ ft tall, is $20$ yards away from a tower $22$ yards high. Determine the angle of elevation from his eye to the top of the tower.



  8. $\begin{aligned} A B&=E D=20 \text{ yards } =20 \times 3=60 \mathrm{~ft}\\ C D&=22 \text{ yards } =22 \times 3=66 \mathrm{~ft}\\ B D&=A E=6 \mathrm{~ft}\\ B C&=C D-B D=66-6=60 \mathrm{~ft} \\ A B&=E D=20 \text { yards }=60 \mathrm{ft} \\ \tan \theta&=\dfrac{B C}{A B}\\ &=\dfrac{60}{60}\\ &=1\\ &=\tan 45^{\circ} \\ \therefore \theta&=45^{\circ} \end{aligned}$
    The angle of elevation $=45^{\circ}$

  9. Two observers are on the opposite sides of a tower. They measure the angles of elevation to the top of the tower as $30^{\circ}$ and $45^{\circ}$ respectively. If the height of the tower is $40$ yards, find the distance between them.



  10. In right $\triangle A D C$,
    $\begin{aligned} \dfrac{A D}{C D} &=\cot A \\ A D &=C D \cot 30^{\circ} \\ &=40 \sqrt{3} \end{aligned}$
    In right $\triangle B D C$,
    $\begin{aligned} \dfrac{D B}{C D} &=\cot B \\ D B &=C D \cot 45^{\circ} \\ &=40 \times 1 \\ &=40 \\ A B &=A D+D B \\ &=40 \sqrt{3}+40 \\ &=40(\sqrt{3}+1) \end{aligned}$
    The distance between the two observers $=40(\sqrt{3}+1)$ yards.

  11. Find the angle of elevation of the sun when the shadow of a pole $12$ ft high is $4\sqrt{3}$ ft long.



  12. In right $\triangle A B C$,
    $\begin{aligned} \tan A&=\dfrac{B C}{A B}\\ &=\dfrac{12}{4 \sqrt{3}} \\ &=\sqrt{3} \\ &=\tan 60^{\circ} \\ \therefore \angle A &=60^{\circ}\\ \end{aligned}$
    The angle of elevation $=60^{\circ}$

  13. Two masts are $60$ ft and $40$ ft high, and the line joining their tops makes an angle of $30^{\circ}$ with the horizontal, find the distance between them.



  14. Let $A E$ and $D C$ be two masts.
    $\begin{aligned} B D&=A E=40 \mathrm{~ft} \\ B C&=C D-B D=60-40=20 \mathrm{~ft} \\ \text { In right }& \triangle A B C, \\ \dfrac{A B}{B C}&=\cot 30^{\circ} \\ A B&=B C \cot 30^{\circ} \\ &=20 \sqrt{3} \\ E D&=A B=20 \sqrt{3} \end{aligned}$
    The distance between two masts $=20 \sqrt{3} \mathrm{~ft}$.

  15. From the foot of a tower the angle of elevation to the top of a $60\mathrm{~ft}$ column is $60^{\circ}$. The angle of elevation from the top of the tower to the top of the column is $30^{\circ}$. Find the height of the column.



  16. Let $A D$ be the height of the tower.
    Let BE be the height of the column.
    $\begin{aligned} B E&=60 \mathrm{~ft}\\ \angle B A E&=60^{\circ}, \angle C D E=30^{\circ}\\ \text{ In right } &\triangle A B E,\\ \dfrac{A B}{B E}&=\cot 60^{\circ}\\ A B&=B E \cot 60^{\circ}\\ &=60 \times \dfrac{\sqrt{3}}{3} \\ &=20 \sqrt{3} \mathrm{~ft} \end{aligned}$
    Since $A B C D$ is a rectangle,
    $\begin{aligned} D C&=A B=20 \sqrt{3} \mathrm{~ft} \\ A D&=B C\\ \text{ In right } &\triangle D C E,\\ \dfrac{C E}{D C} &=\tan 30^{\circ} \\ C E &=D C \tan 30^{\circ}\\ C E &=20 \sqrt{3} \times \dfrac{\sqrt{3}}{3} \\ &=20 \mathrm{~ft} \\ B C &=B E-C E \\ &=60-20\\ &=40 \mathrm{~ft} \\ \therefore A D &=40 \mathrm{~ft} \end{aligned}$
    The height of the tower $=40 \mathrm{~ft}$.